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Diced systems are defined as autonomous system overed by ordinay

differential equations having discontinuities (in Rn) on submanifolds where

one or more of the state variables takes an integer value. Such systems may

be regarded as approximations of continuous systems or as representative

models of a class of discontinuous systems. Trajectories of such systems

(for a given initial state) are readily calculated and may exhibit complex

sliding-mode segments. Asymptotic properties of such trajectories are dis-

cussed and classified. Motivation is given in terms of observed properties

of interconnected power systems. D T IC
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Bduction

Aced systems, as defined here, are finite-dimensional autonomous

continuous-time dynamic systems governed by equations of the form

dxnn n
.t (t) - f(x(t)); xo(t o ) - x0 cRn , t > to, where f : Rn - Rn is piecewise-

constant with discontinuities only on the surfaces where one or more co-

ordinates of R take integer values. A diced system in R2 is very easy to

illustrate: the plane can be divided into a uniform grid, and within each

square a vector representing the magnitude and direction of f is shown

(Figure 1).

Existence and uniqueness of a solution for any fixed initial state,

x can be studied using a generalization of the method introduced by

Filippov (1]; trajectories may exhibit sliding mode segments and higher-

order non differentiable behavior as illustrated in Figure 1. In order

to obtain existence of solutions,
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multivalued extensions of f onto its discontinuity surfaces

are required. Every trajectory can be represented by a sequence of

transition points and times, {x(ti),ti).

Definitions of various types of stability and instability can be con-

structed from an examination of the invariant limit sets [2] of the

trajectories. For diced systems, the range of asymptotic behavior of

trajectories starting from different initial conditions can be exceedingly

rich; Figure 2 illustrates some patterms in R2 . The possibility of approx-

imate global stability analysis using nondeterministic automata is examined

and its limitations are shown.

In practice, diced systems might be viewed as approximations of con-

tinuous or discontinuous systems. In the former case, for instance, we

might seek the best piecewise-constant (finite-element) approximation to a

continuous system. Wang [3] has presented an application of this type for

solving partial differential equations. In the latter case, a s ate space

diffeomorphism might be used first to transform the discontinuities of a

system to lie along coordinate axes, and then a diced approximation could

be developed which would preserve the discontinuous behavior of such systems.

The potential practical advantages of diced approximations lie in a reduction of

information storage required to characterize a system and the possibility of

assessing its approximate asymptotic behavior withon:t a detailed simulation.

For example, 'at the time of a known failure of a power system, it is

often desirable to predict the long-term consequences of various control

strategies so that an operator can decide among them. Yet the system is too



-4-

big to store all possible consequences in advance. A practice which has

thus been followed in some cases [41 is to run a simulation "faster than

real-time" for each control strategy. While the issue of approximation

accuracy is not treated here, the results suggest that significant economy

of real-time computation might be achieved by approximating the dynamics

of a diced system. However, they also suggest that the patterns of stability

and instability exhibited by such discontinuous systems may be highly com-

plex and that analytical methods are not likely to yield clear-cut predictions

about global stability,
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II. Preliminaries, Notation
• c~n

Let i (il, ...,in] be a multi-index on the n-tuples of integers

CZ). Let b * [b 1 ,...,bn]nB represent an n-tuple of binary numbers

(B (0,11). Let XiCx): Rn - R be the characteristic function of the open

set {x- [xl,...,xn]n i k < < i kl k - 1,2,...,n}.

Definition: A diced initial value problem (DIVP) is specified by a

system of ordinary differential equations

x(t) = f(x(t)) ; X(to x0cR ; t > to (2.1)

where f :Rn Rn has the particular form

fCx) n fbi x(x) ; b - OcB n  (2.2)
iez n

and fdie Rn for each multi-index i. i

The surfaces of discontinunity of f may be classified by their dimension.

Let Cb) : Bn "p {l,...,nl be a function denoting the number of "I"'s in the

binary n-tuple b. For fixed i s Zn, consider the sets

-= xen I ik < < ik+l if bi - 0

ik a xk if bk a 1, k - 1,2,...,n} (2.3)

These may be viewed as the set of submanifolds "attached to" the point x-i.*

For example S . is the interior of the n-dimensional cube indexed by its

vertex at xui; SIi (the shorthand 1 denoting b = [ii•...,l]) is the single

point x-i. The submanifolds of dimension p associated with x-i are

*The obvious injection of the integers into the reals is implied.

,I ________________ +__
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S. , (Sbi I 1(b) * n-p} p O,1,...,n. (2.4)
1. p1 , ,. )l

This notation provides a compact classification of all of the subsets of

Rn which are of interest.

In Section III, conditions for well-posedness of a DIVP are examined.

This is done by extending f to its discontinuity surfaces

(from {f oi}, we generate (f bi}, b 0 0 Rn). Then a constructive procedure

can be used to generate solutions x(t) -(t,tox) for each xo¢ Rn, toE R

and hence to define the transition map *: R x R x Rn - Rn. Let X denote

the function space in which trajectories are defined. This leads to the following

Definition: A diced system is an autonomous dynamical system (X,Rn, )

(See. [5]).

Stability has been viewed as a qualitative property of a dynamical

system, and concerns the asymptotic behaviors of trajectories

x(.) - (*,to ,Xo ) as x0 X is varied. Stability of diced systems is dis-

cussed in Section IV. Two useful notions will be those of the positive

limit set and the invariant set F2].

Definition: The set 1 C Rn is invariant with respect to the system

(t) - (x(t),t) if for any xo 0 e there is a to such that the motion

*(t,t 0 ,x0) belongs to S2 for all t > t0 '

Definition: The set U1 Rn is called the positive limit set of a

bounded motion (t;t 0 ,X0) if, for any point p s n, there exists a sequence

of times (t n } tending to infinity as n -, so that

Im 10 Cnt0X0) 0 (2o

In applying these definitions it will be useful to recall that a

function x(t) is periodic T > 0 if x(t) * x(t+T) for all t; "the" period

of a periodic function is defined as the least T for which this equality holds.
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III. Existence and Uniqueness

Consider the DIVP (2.1),(2.2). Defining solutions within the cubes

Soi by integration is entirely straightforward; all difficulties arise in

attempting to extend solutions across the discontinuity surfaces of f; in

general, there is no unique continuation. Various possibilities are

(a) To restrict the class of f so that continuations are always unique

(this is very restrictive indeed, and essentially eliminates many

interesting phenomena from consideration).

(b) To eliminate the non-continuable surfaces from the domain of f; how-

ever, then all points on all trajectories leading to such surfaces

must also be eliminated, and a large part of the original domain of

definition may ultimately be excluded.

(c) To choose an ad hoc rule for continuation of solutions; however, it

proves difficult or impossible to do this in a self-consistent and

unbiased manner.

A fourth alternative has been selected here:

(d) To sacrifice uniqueness and continue all solutions through a dis-

continuity.

In this way a viable deterministic existence theory can be developed, at

the cost of considering a countable number of alternative solutions. A

"physical" justification for adopting this approach is that in the presence

of small perturbations of the initial conditions, a solution near to at

least one alternative solution will occur.

A constructive procedure is given for defining solutions. To simplify

t L
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its presentation, a multivalued continuation of f to the surfaces Sbi, b 0 0,

is first defined. Initially, f is specified on the submanifolds S " = (Soi}

of dimension n. The continuation proceeds recursively to submanifolds,

S? of dimension n-1, n-2,...,O. Recall that S0 is the point set1

(xC Rn Ix u i k an integer). Notationally, a single valued fbi will

not be distinguished from a multivalued fbi' the implication being that

the prescribed rule is applied to each possiblevalue of fbi in turn, and

the set of all results is retained. Let p = n. Suppose fbi are known on
S5, p < q <j n. Then f can be extended to Sp-1 as follows, for each i S Zn.

p q< .biI

Suose Sb . ep-l. Let indices jl'" "in-(p-l) denote the orderedSuppose Sbi-l

nonzero positions of b, i.e., b. = 1, k = l,... ,n-(p-l) and b. = 0 other-

wise. The neighborhoods of Sbi of dimension q, p < q < n, can be defined

as follows. For q = n, consider all indices I formed by decrementing

ijk by one for any subset of the subindices k = 1,...n-(p-l), including

the null-set; then -0 C£n is a neighborhood of Sbi where 0 -0. For

q - n-l, consider all values b having a single "one" in one of the positions

l ... jn,pl) and for each 9, form i from the remaining n-(p-l)-l indices

n-1as above; then C £ S '. is a neighborhood of Sbi. For q = n-2, con-

sider all values 5 having "ones" in any two of the positions j,.". jn-Cp-l)

and from each 6 form I from the remaining n-(p-1)-2 indices as above; then

C Sn-2 is a neighborhood of i" This procedure is continued until

q p.

The values of f on i S?l are determined from the values of

on each of its neighborhoods S $ S , p <q I n. It is thus-J
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sufficient to give the procedure for determining fbi' assuming that these

values on higher-dimensional submanifolds are known (i.e., the values can

be determined recursively). Define S- to be an input submanifold to Sbi

if (f-) * 0 for all t such that 1 1, and for all remaining Z in the

set jl,...,'n..(p.l) (fB) < 0 for those Z such that = it, while

> 0 for those t such that it = it-l, Define S;.- to be an output sub-

manifold if (f61 )t - 0 for all . such that St = 1, and for all remaining

Z in the set j,."'J (f£ )> 0 for those . such that l = iz, while1 in-Cp-1) bi t -

S< 0 for those Z such that i= iZ-l. Note that those sets for

which (f--) 0 0 when b= 1 need not be considered. So long as the set ofbiL
output submanifolds of Si is non-empty, fb. is assigned the set of all

values f-v on the output submanifolds. If the set of output submanifolds

is empty, Sbi is a generalized sliding surface. Consider f£ on S SP in the

input set. If this set is empty, setof a 0. Recall that $r E$9 is

formed by keeping i unchanged in all but one position, say ik' of b, so

b - [b1,...b. 1, 0, bjk+,.. .b n] and either i - i or i = [i1,...,i. 1,

ik+l,...,n]. Thus there are a maximum of 2(n-(p-1)) surfaces in this

subset of the input set. These surfaces are considered in pairs to

determine the admissable values of fbi; using the example above, if Sgi is

in the input set then (f-.). < 0 and if S j is in the input set (Eb) k > 0.

If both elements are members of the input set then

(f-.) fb. of ) 
n s 

6 
h ]/[(f .k (f )k

while if only one is in the input set, let

- i~;,? *2~Mr-K
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fbi " 0

The set of possible values of fbi on a generalized sliding mode is coupleted

by considering each S . S? in this manner. In all such cases, (f .). ;
5 2. Jk

k a 1,...,n-(p-l) are zero, so that further motion occurs on Sbi itself.

Thus, the procedure for extending the function f to all of Rn is com-

pleted. The complexity of the procedure arises from the large number of

possibilities which can arise. A number of such special cases are illus-

trated on Figure 3. Evidently, the procedure for extending f is not the only

one which could be devised. In the next step, construction of solutions,

however, it will become apparent that the underlying principle has been

to define f in a manner which preserves all trajectories that might arise

from each initial condition.

Let x 0 Rn be given as the initial condition of (2.1) at t = t0 ; let

S C S? be the smallest submanifold containing xo. Let f denote one of
bi i bi

the extended values of f on Si. Define

t 'x = + fbi(-to) ; to < T< t I  (3.2)

The time t1 is defined as follows: for each Z such that (fbi)Z is nonzero,

let (t ) denote the first T > to such that [O(T,t,0 xd]2 is an integer;

then t -in(t ),] and x,- f(t o ). If . - 0, thent = and

x I  x 0, and this solution terminates. Otherwise, x defines new values

of b,i, and p, and the solution process continues:

(T,'tk,'xk) + fbi(T-tk) ; tk < r < tk+l (3.3)

• . -:-. ,,
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On those surfaces where fbi is multivalued, each possibility must be

examined in turn; in this sense, ¢ is also multivalued. Each trajectory

pieced-together in this fashion can be summarized by a sequence

{, tk }, k = 0,1 .... in some cases, these sequences are finite and in

other cases infinite. By inspection of {xk } alone, a corresponding

sequence of regions {ok} , where ake{Sbi} is the minimal submanifold con-

taining Xk, can be constructed.

A solution of (2.1), (2.2) is then defined in the obvious manner, as

any 0(t,t ,xo) constructed by the continuation procedure (3.3). It has

the property that for any finite admissablek, (t,t0 ,x0) is piecewise

continuous on [t ,t k] This solution by continuation is said to be

asymptotic if lim tk = . An asymptotic solution is piecewise continuous.
k

For purposes of the present work, a solution will be said to exist if the

state-space continuation is asymptotic.* Asymptotic solutions need not

be unique, but the rate of growth in the number of solutions can be bounded

as a function of k, since the maximum number of output submanifolds can be

bounded above for any Sbi. If there is only one asymptotic solution through

Cxo,t0), it is said to be unique. Continuous dependence of Pt,t 0,Xo) with

respect to x0 , of course, is not to be expected for t > t .

*More o ver if lim t ,>-, solutions by time-continuation could be
defined; however, their prtperties will not be explored here.
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IV. Stability

The usual definitions of stability presuppose a solution which is well-

posed in the sense of existence, uniqueness, and continuous dependence on

the initial data. Diced systems, in general, do not posses the last two

properties. One alternative is to nevertheless use the standard notions

of stability, restricting their domain of application to those initial

states for which the usual notions of well-posedness are (locally) satisfied.

Unfortunately, the set of such initial states appears quite difficult to

characterize and thus imposes an awkward restriction on the applicability

of this alternative.

Another alternative, introduced here, does not impose such restrictions,

but weakens the notion of stability that is employed. Stability is viewed

as a qualitative property of a trajectory, and a system is then said to be

stable when all of its trajectors share this property.

Definition: The motion of a diced system (2.1), (2.2) initiated at

(tox ) is

M(t ,xo) = {(tt 0,x0 ), t > to I 0 is a transition function

initiated at (to ,x)}

which is the set of all trajectories originating at (t0 ,x).

Definition: The motion M(t0 ,x0 ) of a diced system is said to be

(a) Bounded in magnitude if there is a constant 0 > 0 such that

max sup 1I0(t,tox 0)I} <

_Mto__x tt o0

-"Ira-
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(b) Bounded in cardinality if there exists a constant N such that

sup {cardinality of 0(t,t 0,x0)} < N
t>t-0

The concepts of boundedness in magnitude and cardinality are

independent. In both cases, the only difficulties occur at t -, since

(a) any *(t,toXo) is by construction bounded for all finite t, and (b)

the cardinality of *(t,t 0,x0 ) is finite, by construction, for all finite

t. The following propositions are almost immediate.

Proposition 1: In (2.1), suppose H foi 11 < F for all i, then

110(tt 0 ,x0) - x011 < F(t-t0) for all oe M(t0 x0 ).

Proof: The extension of foi to fbi always guaranteed that

If bi 11 < F, and the construction procedure (3.3) guaranteed that the

estimate of the proposition held for each t. q,e.d.

Proposition 2: Let lil - Iill+...+4Inl. Suppose for system (2.1)

there exists B > 0 such that for all Iin > B, and k = 1,... ,n, (foi)k ik < 0.
Then M(t0 ,x0) is bounded in magnitude.

Proof: For any i such that ii > B, every set Sbi contains output

submanifolds with the same Iii or smaller jil, and input submanifolds with

the same jil or larger jil; furthermore, Sli always outputs to - with

II < ji. Thus the construction process cannot terminate for Il > B, and

for such i, Iij is reduced at least once every n intervals; hence every

solution satisfies J0(t,t ,x o) < B for t sufficiently large. Thus

M(t0 'xo) is magnitude-bounded.
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Proposition 3: Suppose that for every i e Zn , b e Bn, Sbi has at most

one output submanifold. Then the motion M(t ,x ) of (2.1),(2.2) is bounded

in cardinality.

Proof: The extension procedure of Section III shows that in this case

fbi takes the value on its output submanifold or the value zero. If a

trajectory enters Sb , it either continues uniquely to the output sub-

manifold, or terminates at Sbi. In either case, the cardinality of the

solution cannot increase during its construction.

Thus there are two notions of instability for diced systems: solutions

may become unbounded in magnitude, and/or they may become unbounded in

cardinality. This second form of instability is new: a trajectory can

fracture and a chain reaction of subsequent fractures may ensure--the

complexity of the process grows-without bound.

Next, a notion of stability is put forth. Suppose that the motion

M(t ,x0) of a diced system is bounded in magnitude and cardinality (or

simply "bounded"). Then a set S C Rn consisting of a finite union of the

submanifolds Si is termed a positive limit set of a (bounded) trajectory

0(t,t0,x0 ) if for any point x e 5, there exists a sequence of times {Tk},

tending to infinity as k-*-, so that

lim)TkOoxO) -x( - 0 (4.1)
k-p-

where ) ( denotes the set-membership metric, i.e., if x e ci'

)y-x( S 0 y e Sbi

1 y S 5bi

~b
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In applying this definition, it is important to recall the standing

assumption from Section III, that all trajectories are asymptotic, so

that such sequences {T} exist.

Definition: A bounded motion M(t ,x ) of a diced system is termed

pointwise stable if all trajectories 0(t,t0 ,xo)e M(tox 0 ) have the same

positive limit set. The motion is locally stable for x0 e Si if all

trajectories *(t,t ,X)E M(t ,X), x E Si, have the same positive limit set.

The motion is globally stable if all trajectories 0(t,t ,X) have the same

positive limit set.

Concepts of uniform stability will not be discussed since only time-

invariant diced systems are considered in the present account.* In fact,

the evaluation of stability, according to the definitions given, can be

based merely on knowledge of the sequence {qk} of submanifolds containing

{xkl, since it is known from the construction procedure that tk l > t k and

from the asymptotic assumption that lim tk = . This suggests that a way to

generate the sequence {ak} autonomously, without explicit integration and

generation of {Xk'tkl would be particularly valuable in the assessment of

stability. This has not been achieved yet.

Knowledge of the time-structure {tk} of individual solutions can be

of further value in refining stability notions. To simplify the remaining

concepts it is now assumed that the trajectories are uniquely-defined

NThe results could be extended in this direction for systems with continuous
time-variation; however discontinuously time-varying systems may not be con-
timuable, as Filippov pointed out.

jI~i;MOW
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(e.g., as occurs in Proposition 3) and bounded. Suppose I is a positive

limit set of such a solution in the conventional sense of Section II

(eq. (2.5)). Then in the usual manner it can be shown that IT is bounded,

closed, non-empty and invariant, the last property being a consequence of

time-invariance. In fact, as a consequence of finite-dimensionality of

Rn, all such solutions are asymptotically almost-periodic (6]. Two cases

of special interest are the asymptotically constant (equilibrium) solution

and the asymptotically periodic solution. These can be identified

directly from the sequence (Xktk} characterizing 0(t,t 0x ).

Proposition 4: If the sequence {Xk,tk} is finite of length N, the

positive-invariant limit set consists of one point, the last value XN

(for which tN - -). If the sequence {Xkitkl is jointly periodic of period

m for k > N, then the positive-inariant limit set is a cycle (closed curve)

in Rn .

Proof: For the first case, note that the construction procedure

automatically defines tN a- when the sequence is finite, and this implies

a constant solution for t > tN. In the second case, note that since

(Xk,tkl completely specify 0(t,to,x ), 0 must be periodic of period

tk+m-tk, k > N, whenever {Xk,tk} is periodic (in fact, the solution is a

linear interpolation between these points).

It is interesting to note that for diced systems, the establishment

of an equilibrium or periodic solution after a finite time (t,) is often to

be expected (whereas this would be considered exceptional in the case of

continuous differential equations); however, in some cases almost periodic

solutions may also exist.



V. Discussion and Conclusions

The present account of the stability of diced systems leaves a number

of original question unanswered and raises some new ones. A study of methods

for temporal continuation of non-asymptotic solutions is needed; such

solutions may represent a new sort of sliding mode which can arise in

higher dimensional spaces, as suggested by an example of Mtin [7]. The

possibility of extending the techniques developed here to time-varying

systems has been mentioned; Filippov's general existence results apply to

this problem. A study of the partitioning of initial states which is implied

by the proposed stability definition would also be fruitful; what properties

are shared by initial state sets giv ing rise to the same asymptotic solution?

In general, it would appear that the initial states within a given region

S can ultimately end up widely dispersed. The possibility of using an

automaton to simplify the propogation of solutions has also been raised.

The approximation of continuous systems by diced systems has not been ex-

plored, but under appropriate conditions, a bound on the approximation error

should be achievable.

In spite of the questions that are unanswered, some modest progress

has been made toward defining the stability properties of diced systems.

First, a constructive continuation procedure for higher dimensions has been

found; the problem readily evades one's intuition about n - 1,2 and even 3

as endless combinations of difficult situations may occur. Second, a

compromise on the issue of uniqueness has been put forth: the number of

admissable solutions at any finite time is bounded. Third, the concepts of

stability have been generalized to provide meaningful criteria for discon-
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tinuous systems of diced type.

Returning to the electric power system example cited in the opening

section, it would appear that the implications of the research might be

very disturbing, for two primary reasons. First, a new type of instability--

an unbounded growth in the number of possible solutions with time--has been

identified. Second, and independently, the partitioning of the initial

state--at least in worst-case situations--based on asymptotic properties,

appears to be very fine and irregular; thus a small perturbation in the

initial state may give rise to completely different asymptotic behavior

than is found for the unperturbed initial state. Both of these phenomena

imply that the future behavior of a diced system with a (approximately)

specified initial state may be fundamentally unpredictable; if the long-

term future consequences of a present control policy are unpredictable,

the problem of choosing the best poticy becomes more difficult and plaznink

must be done with a shorter horizon.

W "_- -
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